The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5′-transposon end
Kosek, D., Grabundzija, I., Lei, H., Bilic, I., Wang, H., Jin, Y., Peaslee, G.H., Hickman, A.B., and Dyda, F. (2021) Mol Cell 81, P4271-4286.e4 [link]
Structures of ISCth4 transpososomes reveal the role of asymmetry in copy‐out/paste‐in DNA transposition
Kosek, D., Hickman, A.B., Ghirlando, R., He, S., and Dyda, F. (2020) EMBO J e105666.[link]
Structural basis of seamless excision and specific targeting by piggyBac transposase
Chen, Q., Luo, W., Veach, R.A., Wilson, M.H., and Dyda, F. (2020) Nature Commun. 11, 3446.[link]
Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas
Hickman, A.B., Kailasan, S., and Dyda, F. (2020) eLife 9, e50004.[31913120]
Structural insights into the mechanism of double strand break formation by Hermes, a hAT family eukaryotic DNA transposase
Hickman, A.B., Voth, A.R., Ewis, H., Li, X.H., Craig, N.L., and Dyda, F. (2018) Nucleic Acid Res. 46, 10286-10301. [30239795]
A new twist on V(D)J recombination
Dyda, F., and Rice, P.A. (2018) Nature Struct. Mol. Biol. 25, 648-649. [30061601]
A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity
Debnath, S., Kosek, D., Tagad, H.D., Durell, S.R., Appella, D.H., Acevedo, R., Grishaev, A., Dyda, F., Appella, E., and Mazur, S.J. (2018) J. Biol. Chem. 293, 7993-8008.[29602904]
Targeting IS608 transposon integration to highly specific sequences by structure-based transposon engineering
Morero, N.R., Zuliani, C., Kumar, B., Bebel, A., Okamoto, S., Guynet, C., Hickman, A.B., Chandler, M., Dyda, F., and Barabas, O. (2018) Nucleic Acid Res. 46, 4152-4163.[29635476]
Helraiser intermediates provide insight into the mechanism of eukaryotic replicative transposition
Grabundzija, I., Hickman, A.B., and Dyda, F. (2018) Nature Commun. 9, 1278.[29599430]
Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggybac transposase
Morellet, N., Li, X.H., Wieninger, S.A., Taylor, J.L., Bischerour, J., Moriau, S., Lescop, E., Bardiaux, B., Mathy, N., Assrir, N., Bétermier, M., Nilges, M., Hickman, A.B., Dyda, F., Craig, N.L., and Guittet, E. (2018) Nucleic Acid Res 46, 2660-2677.[29385532]
Mechanisms of evolution in high-consequence drug resistance plasmids
He, S., Chandler, M., Varani, A.M., Hickman, A.B., Dekker, J.P., and Dyda, F. (2016) mBio 7, e01987.[27923922]
A model for transposition of the colistin resistance gene mcr-1 by ISApl1
Snesrud, E., He, S., Chandler, M., Dekker, J.P., Hickman, A.B., McGann, P., and Dyda, F. (2016) Antimicrob. Agents Chemother. 60, 6973-6976.[27620479]
DNA transposition at work
Hickman, A.B., and Dyda, F. (2016) Chem. Reviews 116, 12758-12784.[27187082]
A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes
Grabundzija, I., Messing, S.A., Thomas, J., Cosby, R.L., Bilic, I., Miskey, C., Gogol-Döring, A., Kapitonov, V., Diem, T., Dalda, A., Jurka, J., Pritham, E.J., Dyda, F., Izsvák, Z., and Ivics, Z. (2016) Nature Commun. 7, 10716.[26931494]
The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications
Hickman, A.B., and Dyda, F. (2015). Nucleic Acid Res. 43, 10576-10587. Designated an "NAR Breakthrough Article".[26573596]
Insertion Sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition
He, S., Hickman, A.B., Varani, A.M., Siguier, P., Chandler, M., Dekker, J.P., and Dyda, F. (2015) mBio 6, e00762-15.[26060276]
Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA
Dyda, F., and Hickman, A.B. (2015) Mobile DNA 6, 9.[27408625]
The IS200/IS605 family and "Peel and Paste" single-strand transposition mechanism
He, S., Corneloup, C., Guynet, C., Lavatine, L. Caumont-Sarcos, A., Siguier, P., Marty, F., Dyda, F., Chandler, M., and Ton Hoang, B. (2015) Book Chapter in "Mobile DNA III". Publisher ASM. Also in Microbiol. Spectrum 3, 609-630.[26350330]
Mechanisms of DNA transposition
Hickman, A.B., and Dyda, F. (2015) Lead Chapter in "Mobile DNA III". Publisher ASM. Also in Microbiol. Spectrum 3, 531-553.[26104718]
CRISPR-Cas immunity and mobile DNA: A new superfamily of DNA transposons encoding a Cas1 endonuclease
Hickman, A.B., and Dyda F. (2014) Mobile DNA 5, 23.[25180049]
Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica
Hickman, A.B., Ewis, E.H., Li, X., Knapp, J.A., Laver, T., Doss, A.L., Tolun, G., Steven, A.C., Grishaev, A., Bax, A., Atkinson, P.W., Craig, N.L., and Dyda, F. (2014) Cell 158, 353-367.[25036632]
Breaking and joining single-stranded DNA: the HUH endonuclease superfamily
Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G, Bao TH.
Nature Reviews Microbiology 11, 525-538 (2013).
(abstract)
Building a fission machine - structural insights into dynamin assembly and activation
Chappie JS and Dyda F.
Journal of Cell Science 126, 2773-2784 (2013).
(abstract)
IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer
He SS, Guynet C, Siguier P, Hickman AB, Dyda F, Chandler M, Bao TH.
Nucleic Acid Research 41, 3302-3313 (2013).
(abstract)
The emerging diversity of transpososome architectures
Dyda F, Chandler M, Hickman AB.
Quarterly Reviews Of Biophysics 45, 493-521 (2012).
(abstract)
The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic
palindrome bound to its associated nuclease
Messing SAJ, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F.
Nucleic Acid Research 40, 9964-9979 (2012).
(abstract)
The Amino Acid Linker between the Endonuclease and Helicase Domains of Adeno-Associated Virus
Type 5 Rep Plays a Critical Role in DNA-Dependent Oligomerization
Maggin JE, James JA, Chappie JS, Dyda F, Hickman AB.
J Virol 86, 3337-3346 (2012).
(abstract)
A pseudo-atomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke
Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL, Milligan RA, Hinshaw JE, Dyda F.
Cell 147, 209-222 (2011).
(abstract)
Reconstruction of a functional IS608 single-strand transpososome: role of non-canonical base pairing
He S, Hickman AB, Dyda F, Johnson NP, Chandler M, Ton-Hoang B.
Nucleic Acids Res 39, 8503-8512 (2011).
(abstract)
DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans
Hickman AB, James JA, Barabas O, Pasternak C, Ton-Hoang B, Chandler M, Sommer S, Dyda F.
EMBO J 29 3840-3852 (2010)
(abstract)
Single-stranded DNA transposition is coupled to host replication
Ton-Hoang B, Pasternak C, Siguier P, Guynet C, Hickman AB, Dyda F, Sommer S, Chandler M.
Cell 142 398-408 (2010)
(abstract)
G domain dimerization controls dynamin's assembly-stimulated GTPase activity
Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F.
Nature 465 435-440 (2010)
(abstract)
Integrating prokaryotes and eukaryotes: DNA transposases in light of structure
Hickman AB, Chandler M, Dyda F.
Crit Rev Biochem Mol Biol 45 50-69 (2010)
(abstract)
Resetting the site: Redirecting integration of an insertion sequence in a predictable way
Guynet C, Achard A, Ton-Hoang B, Barabas O, Hickman AB, Dyda F, Chandler M.
Molecular Cell 34 612-619 (2009)
(abstract)
Mechanism of IS200/IS605 family DNA transposases: Activation and transposon-directed target site selection
Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F.
Cell 132 208-220 (2008)
(abstract)
In vitro reconstitution of a single-stranded transposition mechanism of IS608
Guynet C, Hickman AB, Barabas O, Dyda F, Chandler M, Ton-Hoang B.
Molecular Cell 29 302-312 (2008)
(abstract)
Structural basis for dimerization of LAP2 alpha, a component of the nuclear lamina
Bradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, Craigie R, Dyda F.
Structure 15 643-653 (2007)
(abstract)
Structural basis for DNA bridging by barrier-to-autointegration factor
Bradley CM, Ronning DR, Ghirlando R, Craigie R, Dyda F.
Nature Struct Mol Biol 12 935-936 (2005)
Molecular architecture of a eukaryotic DNA transposase
Hickman AB, Perez ZN, Zhou LQ, Musingarimi P, Ghirlando R, Hinshaw JE, Craig NL, Dyda F.
Nature Struct Mol Biol 12 715-721 (2005)
Active site sharing and subterminal hairpin recognition in a new class of DNA transposases
Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F.
Molecular Cell 20 143-154 (2005)
Transposition of hAT elements links transposable elements and V(D)J recombination
Zhou LQ, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL.
Nature 432 995-1001 (2004)
The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA
Ronning DR, Li Y, Perez ZN, Ross PD, Hickman AB, Craig NL, Dyda F.
Molecular Cell 13 403-414 (2004)
The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct DNA recognition interfaces
Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F.
EMBO J 23 2972-2981 (2004)
Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep
Hickman AB, Ronning DR, Kotin RM, Dyda F.
Molecular Cell 10 327-337 (2002)
Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation
Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F.
Cell 105 257-256 (2001)
GCN5-related N-acetyltransferases: a structural overview
Dyda F, Klein DC, Hickman AB.
Annu Rev Biophys Biomol Struct 29 81-103 (2000)
Unexpected structural diversity in DNA recombination: The restriction endonuclease connection
Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F.
Molecular Cell 5 1025-1034 (2000)
The structural basis of ordered substrate binding by serotonin N-acetyltransferase: Enzyme complex at 1.8 angstrom resolution with a bisubstrate analog
Hickman AB, Namboodiri MAA, Klein DC, Dyda F.
Cell 97 361-369 (1999)
Melatonin biosynthesis: The structure of serotonin N-acetyltransferase at 2.5 angstrom resolution suggests a catalytic mechanism
Hickman AB, Klein DC, Dyda F.
Molecular Cell 3 23-32 (1999)
Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution
Hickman AB, Waninger S, Scocca JJ, Dyda F.
Cell 89 227-237 (1997)